19 research outputs found

    Prophylactic Melatonin for Delirium in Intensive Care (Pro-MEDIC): Study protocol for a randomised controlled trial

    Get PDF
    Background: Delirium is an acute state of brain dysfunction characterised by fluctuating inattention and cognitive disturbances, usually due to illness. It occurs commonly in the intensive care unit (ICU), and it is associated with greater morbidity and mortality. It is likely that disturbances of sleep and of the day-night cycle play a significant role. Melatonin is a naturally occurring, safe and cheap hormone that can be administered to improve sleep. The main aim of this trial will be to determine whether prophylactic melatonin administered to critically ill adults, when compared with placebo, decreases the rate of delirium. Methods: This trial will be a multi-centre, randomised, placebo-controlled study conducted in closed ICUs in Australia. Our aim is to enrol 850 adult patients with an expected ICU length of stay (LOS) of 72h or more. Eligible patients for whom there is consent will be randomised to receive melatonin 4mg enterally or placebo in a 1:1 ratio according to a computer-generated randomisation list, stratified by site. The study drug will be indistinguishable from placebo. Patients, doctors, nurses, investigators and statisticians will be blinded. Melatonin or placebo will be administered once per day at 21:00 until ICU discharge or 14days after enrolment, whichever occurs first. Trained staff will assess patients twice daily to determine the presence or absence of delirium using the Confusion Assessment Method for the ICU score. Data will also be collected on demographics, the overall prevalence of delirium, duration and severity of delirium, sleep quality, participation in physiotherapy sessions, ICU and hospital LOS, morbidity and mortality, and healthcare costs. A subgroup of 100 patients will undergo polysomnographic testing to further evaluate the quality of sleep. Discussion: Delirium is a significant issue in ICU because of its frequency and associated poorer outcomes. This trial will be the largest evaluation of melatonin as a prophylactic agent to prevent delirium in the critically ill population. This study will also provide one of the largest series of polysomnographic testing done in ICU. Trial registration: Australian New Zealand Clinical Trial Registry (ANZCTR) number: ACTRN12616000436471. Registered on 20 December 2015

    Computational footprinting methods for next-generation sequencing experiments

    No full text
    Transcriptional regulation orchestrates the proper temporal and spatial expression of genes. The identification of transcriptional regulatory elements, such as transcription factor binding sites (TFBSs), is crucial to understand regulatory networks driving cellular processes such as cell development and the onset of diseases.The standard computational approach is to use sequence-based methods, which search over the genome’s DNA for sequences representing the DNA binding affinity sequence of transcription factors (TFs). However, this approach is not able to predict active binding sites, i.e. binding sites that are being currently bound by TFs at a particular cell state. This happens as the sequence-based methods do not account for the fact that the chromatin dynamically changes its state between an open form (and accessible to TF binding) and closed (not accessible by TFs).Advances in next-generation sequencing techniques have enabled the measurement of such open chromatin regions in a genome-wide manner with assays such as the chromatin immunoprecipitation followed by massive sequencing (ChIP-seq) and DNase I digestion followed by massive sequencing (DNase-seq). Current research has proven that such open chromatin genome-wide assays improve sequence-based detection of active TFBSs. The rationale is to restrict the sequence-based search of binding sites to genomic regions where these assays indicate the chromatin is open and accessible for TF binding, in a cell-specific manner.We propose the first computational framework which integrates both DNase-seq and ChIP-seq data to perform predictions of active TFBSs. We have previously observed that there is a distinctive pattern at active TFBSs regarding both DNase-seq and ChIP-seq data. Our framework treats these data using signal normalization strategies and searches for these distinctive patterns, the so-called “footprints”, by segmenting the genome using hidden Markov models (HMMs). Given that, our framework - termed HINT (HMM-based identification of TF footprints) - is categorized as a “computational footprinting method”.We evaluate our computational footprinting method by comparing the footprint predictions to experimentally verified active TFBSs. Our evaluation approach creates statistics which enables the comparison between our method and competing computational footprinting methods. Our comparative experiment is the most complete so far, with a total of 14 computational footprinting methods and 233 TFs evaluated.Furthermore, we successfully applied our computational footprinting method HINT in two different biological studies to identify regulatory elements involved in specific biological conditions. HINT has proven to be a useful computational framework in biological studies involving regulatory genomics

    The interaction of MYC with the trithorax protein ASH2L promotes gene transcription by regulating H3K27 modification

    No full text
    The appropriate expression of the roughly 30,000 human genes requires multiple layers of control. The oncoprotein MYC, a transcriptional regulator, contributes to many of the identified control mechanisms, including the regulation of chromatin, RNA polymerases, and RNA processing. Moreover, MYC recruits core histone-modifying enzymes to DNA. We identified an additional transcriptional cofactor complex that interacts with MYC and that is important for gene transcription. We found that the trithorax protein ASH2L and MYC interact directly in vitro and co-localize in cells and on chromatin. ASH2L is a core subunit of KMT2 methyltransferase complexes that target histone H3 lysine 4 (H3K4), a mark associated with open chromatin. Indeed, MYC associates with H3K4 methyltransferase activity, dependent on the presence of ASH2L. MYC does not regulate this methyltransferase activity but stimulates demethylation and subsequently acetylation of H3K27. KMT2 complexes have been reported to associate with histone H3K27-specific demethylases, while CBP/p300, which interact with MYC, acetylate H3K27. Finally WDR5, another core subunit of KMT2 complexes, also binds directly to MYC and in genome-wide analyses MYC and WDR5 are associated with transcribed promoters. Thus, our findings suggest that MYC and ASH2L-KMT2 complexes cooperate in gene transcription by controlling H3K27 modifications and thereby regulate bivalent chromatin

    Nitric Oxide Synthase in Heart and Thoracic Aorta After Liver Ischemia and Reperfusion Injury: An Experimental Study in Rats

    No full text
    Objectives: We tested the effects of liver reperfusion in the immunohistochemical expression of nitric oxide synthase on the thoracic aorta and the heart. Materials and Methods: We randomized 24 male Wistar rats into 3 groups: (1) control; (2) R2 group, with 60 minutes of partial (70%) liver ischemia and 2 hours of global liver reperfusion; (3) and R6 group, with 60 minutes of partial liver ischemia and 6 hours of global liver reperfusion. Results: In the heart, there was little, diffuse immunohistochemical endothelial staining; immunohistochemical inducible nitric oxide synthase staining was expressed in the adventitia layer of intramyocardial vessels in both cases, with a time-dependent but not statistically significant increase. In the thoracic aorta, a time-dependent decrease in endothelial nitric oxide synthase expression in the muscular layer after reperfusion, which was statistically significant in R6 versus the control. Positive immunostaining for inducible nitric oxide synthase was seen in the muscular and endothelial layers, and this varied from moderate in the control group, to light in the endothelium in groups R2 and R6. Conclusions: We observed changes that may be implicated in heart injury and impairment of aortal tone after liver ischemia and reperfusion injury

    Epigenetic program and transcription factor circuitry of dendritic cell development

    No full text
    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development

    Binding of nuclear factor kappa B to noncanonical consensus sites reveals its multimodal role during the early inflammatory response

    No full text
    Mammalian cells have developed intricate mechanisms to interpret, integrate, and respond to extracellular stimuli. For example, tumor necrosis factor (TNF) rapidly activates proinflammatory genes, but our understanding of how this occurs against the ongoing transcriptional program of the cell is far from complete. Here, we monitor the early phase of this cascade at high spatiotemporal resolution in TNF-stimulated human endothelial cells. NF-kappa B, the transcription factor complex driving the response, interferes with the regulatory machinery by binding active enhancers already in interaction with gene promoters. Notably, >50% of these enhancers do not encode canonical NF-kappa B binding motifs. Using a combination of genomics tools, we find that binding site selection plays a key role in NF-kappa B-mediated transcriptional activation and repression. We demonstrate the latter by describing the synergy between NF-kappa B and the corepressor JDP2. Finally, detailed analysis of a 2.8-Mbp locus using sub-kbp-resolution targeted chromatin conformation capture and genome editing uncovers how NF-kappa B that has just entered the nucleus exploits pre-existing chromatin looping to exert its multimodal role. This work highlights the involvement of topology in cis-regulatory element function during acute transcriptional responses, where primary DNA sequence and its higher-order structure constitute a regulatory context leading to either gene activation or repression
    corecore